2025-05-08 04:09:41
氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團使其可與生物分子直接相互作用,易于化學(xué)修飾,同時具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進行加工。另外,GO具有獨特的電子結(jié)構(gòu)性能,可以通過熒光能量共振轉(zhuǎn)移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點及上轉(zhuǎn)換納米材料)的熒光。這些特點都使GO成為制作傳感器**的基本材料[74-76]。Arben的研究中發(fā)現(xiàn),將CdSe/ZnS量子點作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對CdSe/ZnS量子點的熒光淬滅效率分別為66±17%、74±7%、71±1%和97±1%,因此與其他碳材料相比,GO具有更好的熒光猝滅效果[77]。GO成為制作傳感器**的基本材料。常州多層氧化石墨
工業(yè)化和城市化導(dǎo)致天然地表水體中的有毒化學(xué)品排放,其中包括酚類、油污、***、農(nóng)藥和腐植酸等有機物,這些污染物在制藥,石化,染料,農(nóng)藥等行業(yè)的廢水中***檢測到。許多研究集中在從水溶液中有效去除這些有毒污染物,如光催化,吸附和電解54-57。在這些方法中,由于吸附技術(shù)低成本,高效率和易于操作,遠遠優(yōu)于其他技術(shù)。與傳統(tǒng)的膜材料不同,GO作為碳質(zhì)材料與有機分子的相互作用機理差異很大。新的界面作用可在GO膜內(nèi)引入獨特的傳輸機制,導(dǎo)致更有效地從水中去除有機污染物。石墨烯和GO對有機物的吸附機理的研究表明,疏水作用、π-π鍵交互作用、氫鍵、共價鍵和靜電相互作用會影響石墨烯和GO對有機物的吸附能力。常州生產(chǎn)氧化石墨氧化石墨烯可以有效去除溶液中的金屬離子。
氧化應(yīng)激是指體內(nèi)氧化與抗氧化作用失衡,傾向于氧化,導(dǎo)致中性粒細胞炎性浸潤,蛋白酶分泌增加,產(chǎn)生大量氧化中間產(chǎn)物,即活性氧。大量的實驗研究已經(jīng)確認細胞經(jīng)不同濃度的GO處理后,都會增加細胞中活性氧的量。而活性氧的量可以通過商業(yè)化的無色染料染色后利用流式細胞儀或熒光顯微鏡檢測到。氧化應(yīng)激是由自由基在體內(nèi)產(chǎn)生的一種負面作用,并被認為是導(dǎo)致衰老和疾病的一個重要因素。氧化應(yīng)激反應(yīng)不僅與GO的濃度[17,18]有關(guān),還與GO的氧化程度[19]有關(guān)。如將蠕蟲分別置于10μg/ml和20μg/ml的PLL-PEG修飾的GO溶液中,GO會引起蠕蟲細胞內(nèi)活性氧的積累,其活性氧分別增加59.2%和75.3%。
光電器件是在微電子技術(shù)基礎(chǔ)上發(fā)展起來的一種實現(xiàn)光與電之間相互轉(zhuǎn)換的器件,其**是各種光電材料,即能夠?qū)崿F(xiàn)光電信息的接收、傳輸、轉(zhuǎn)換、監(jiān)測、存儲、調(diào)制、處理和顯示等功能的材料。光電傳感器件指的是能夠?qū)δ撤N特征量進行感知或探測的光電器件,狹義上*指可將特征光信號轉(zhuǎn)換為電信號進行探測的器件,廣義而言,任何可將被測對象的特征轉(zhuǎn)換為相應(yīng)光信號的變化、并將光信號轉(zhuǎn)換為電信號進行檢測、探測的器件都可稱之為光電傳感器。掃描隧道顯微鏡照片表明,在氧化石墨中氧原子排列為矩形。
使得*在單層中排列的水蒸氣可以滲透通過納米通道。通過在GO納米片之間夾入適當尺寸的間隔物來調(diào)節(jié)GO間距,可以制造廣譜的GO膜,每個膜能夠精確地分離特定尺寸范圍內(nèi)的目標離子和分子。水合作用力使得溶液中氧化石墨烯片層間隙的距離增大到1.3nm,真正有效、可自由通過的孔道尺寸為0.9nm,計算出水合半徑小于0.45nm的物質(zhì)可以通過氧化石墨烯膜片,而水合半徑大于0.45nm的物質(zhì)被截留,如圖8.4所示。例如,脫鹽要求GO的層間距小于0.7nm,以從水中篩分水合Na+(水合半徑為0.36nm)。通過部分還原GO以減小水合官能團的尺寸或通過將堆疊的GO納米片與小尺寸分子共價鍵合以克服水合力,可以獲得這種小間距。與此相反,如果要擴大GO的層間距至1~2nm,可在GO納米片之間插入剛性較大的化學(xué)基團或聚合物鏈(例如聚電解質(zhì)),從而使GO膜成為水凈化、廢水回收、制藥和燃料分離等應(yīng)用的理想選擇。如果使用更大尺寸的納米顆?;蚣{米纖維作為插層物,可以制備出間距超過2nm的GO膜,以用于生物醫(yī)學(xué)應(yīng)用(例如人工腎和透析),這些應(yīng)用需要大面積預(yù)分離生物分子和小廢物分子。氧化石墨片層的邊緣包括羰基或羧基。常州生產(chǎn)氧化石墨
減少面內(nèi)難以修復(fù)的孔洞,從而提升還原石墨烯的本征導(dǎo)電性。常州多層氧化石墨
石墨烯是一種在光子和光電子領(lǐng)域十分有吸引力的材料,與別的材料相比有很多優(yōu)點[1]。作為一種零帶隙材料,石墨烯的光響應(yīng)譜覆蓋了從紫外到THz范圍;同時,石墨烯在室溫下就有著驚人的電子輸運速度,這使得光子或者等離子體轉(zhuǎn)換為電流或電壓的速度極快;石墨烯的低耗散率以及可以把電磁場能量限定在一定區(qū)域內(nèi)的性質(zhì),帶來了很強的光與石墨烯相互作用。雖然還原氧化石墨烯(RGO)缺少本征石墨烯中觀測到的電子輸運效應(yīng)以及其它一些凝聚態(tài)物質(zhì)效應(yīng),但其易于規(guī)模化制備、性質(zhì)可調(diào)等優(yōu)異特性,使其在傳感檢測領(lǐng)域展現(xiàn)出極大的應(yīng)用前景。常州多層氧化石墨